Nuyakuk Hydro Hydrologic Model and Assessment

Robert Prucha, PhD – Integrated Hydro Systems LLC Cameron Wobus, PhD - CK Blueshift LLC Peter Bieniek, PhD – University of Alaska Fairbanks

Overview

- Motivation
- Model History
 - Full Nushagak model
 - Nuyakuk submodel
- Model Refinements
 - Nuyakuk model calibration
 - Sensitivity analysis
- Climate change simulations
 - Time periods, scenarios
 - Model implementation
- Results
 - Changes in hydrographs
 - Implications for hydropower resource

PROPOSED STUDY PLAN

NUYAKUK RIVER HYDROELECTRIC PROJECT FERC NO. 14873

Motivation

- Proposed run-of-river hydropower project on Nuyakuk River. Need to understand:
 - How water diversions might affect downstream habitat, fish passage, etc
 - How climate change could affect the hydropower resource

Submitted by:

Nushagak Electric & Telephone Cooperative, Inc. P.O. Box 350 Dillingham, AK 99576

March 2022

These needs require an integrated, physically-based hydrologic model of the system

Model History

- We built a MikeSHE model of the entire Nushagak watershed in 2021
- This large-scale model underestimated peak runoff in the Nuyakuk
- Underscored need for refinements to Nuyakuk sub-model domain

STDres=111.166 R(Correlation)=0.603268 R2(Nash_Sutcliffe)=0.0374732

NUYAKUK R NR DILLINGHAM AK [m^3/s]

Model Development

- The full Nushagak watershed is ~13,000 mi² larger than the state of Massachusetts.
- We refined our Nushagak model to develop a more detailed model of the Nuyakuk sub-watershed (~1,500 mi²)
- We focused on the following parameters to improve calibration at the Nuyakuk stream gage
 - Precipitation lapse rates
 - Spatial resolution/detail of drainage network
 - Distributed surface water storage parameters
 - Subsurface hydraulic parameters
 - River-aquifer exchange parameters

Surface Water Hydraulic Network

- Refined lake extent and bathymetry
- Improved definition of wetland areas
- These changes significantly improved numerical simulation

Model Calibration

- First calibrated sub-model area above Allen River @Aleknagik gage
- Assessed discharge sensitivity to a range of parameters
- Calibrated Full Nuyakuk model against discharge:
 - Allen River Aleknagik gage
 - Nuyakuk River gage
- Also calibrated qualitatively against:
 - Seasonal ponding USGS Dynamic Surface Water Extent data
 - Seasonal groundwater depths Aerial imagery
 - Actual Evapotranspiration (EEFLUX-Metric)
 - Snow Cover Extent MODIS

Calibration Parameters

			Unconsolidated	Ove	rburden	
Hydrologic Process	Parameter	Constraints	Deposits	Th	ickens	
Surface Resistance	Manning's N	Distributed based on Land	Kx. Kz. Sv. Ss	Dov	vnslope	
Overland Ponding	DetStor	Cover Types Distributed based on ponded extents.				
Saturated GW Flow	Hydraulic Conductivity	Distributed based on surficial geology				
	Storage Term (Ss) Stream-Aquifer Leakage	Uniform, adjusted Varies with Kh. Reduced beneath lakes		Lakes	Wea	athered
	Overburden thickness	Distributed based on topography, lake extent			Kx, I	Kz, Sy, Ss
Unsaturated GW Flow	Hydraulic Conductivity (Kx, Kz)	Distributed based on SSURGO survey				
Precipitation	Saturation Points ERA5 Station Elevations	Distributed as above Adjusted to match calibration			Competen Bedrock	t
Precipitation	Lapse rate	Uniform value - increased.			Kx, Kz, Sy,	Ss

Re-calibrated Discharge Response

Calibration significantly improved

- Nuyakuk gage → ~94% Correlation
- Aleknagik gage \rightarrow ~92 % Correlation

Peak Flows, Seasonal Volumes and Ascension/Recession Curves reproduced well.

Discharge Response - Detail

- Baseflow replicated well at both USGS gage sites
- Peak flow timing matched for both spring and fall peaks
- Peak flow magnitudes matched well across multiple seasons of varying precipitation

Sensitivity Runs - Summary

Sensitivity Run	Parameter Change	SENS name	Sens change	Allen River nr Aleknagik Gage	Nuyakuk River Gage	Allen River nr Aleknagik Gage2	Nuyakuk River Gage3	Column4
				MeanError	MeanError	R-Corr	R-Corr	Assumptions
		Baseline		-8.4	27.6	0.913	0.899	
Sens1	Riverbed Leakage	lowleak	1/10	-8.39	27.98	0.913	0.897	Only Lake Areas changed
Sens2	Riverbed Leakage	highleak	10x	-8.4	-36.2	0.912	0.85	Only Lake Areas changed
	Surface Water							
Sens3	Storage	lowDETSTOR	1/2x baseline	-8.97	-229.9	0.914	0.861	Baseline has variable detention storage
	Surface Water							
Sens4	Storage	highDETSTOR	2x baseline	-8.32	27.98	0.913	0.897	Baseline has variable detention storage
Sens5	Soil Kv	HighSoilKv	10x	-8.4	-36.2	0.912	0.851	Baseline has single soil type
Sens6	Soil Kv	LowSoilKv	1/10	-8.38	27.66	0.915	0.898	Baseline has single soil type
Sens7	SoilProp	Variable	SSURGO	-8.07	27.598	0.911	0.894	Baseline has single soil type
Sens8	Aquifer Kh	HighKh_L1	10x	-8.53	23.5	0.91	0.879	Baseline has variable K values
Sens9	Aquifer Kh	LowKh_L1	1/10	-8.37	27.74	0.913	0.9	Baseline has variable K values
Sens10	Aquifer Kv	HighKv_L1	10x	-9.7	20	0.89	0.86	Baseline has variable K values
Sens11	Aquifer Kv	LowKv_L1	1/10	-9.25	25.7	0.915	0.9	Baseline has variable K values
		UniformKh						
Sens12	Aquifer K	Kv	Kh = Kv	-8.3	27.8	0.91	0.9	Variable K values
Sens13	PrcpLapse	High	25 %/100 m	-26.8	-16.7	0.91	0.9	Baseline is 17% /100m
Sens14	PrcpLapse	Low	5 %/100 m	9.96	71	0.87	0.85	Baseline is 17% /100m
Sens15	Bedrock	None		-8.5	27	0.92	0.9	Lower 2 layers inactive. Baseline has 3 layers.
Sens16	AlluvThick	Alluv_3m	3m thick	-8.5	27.5	0.92	0.9	Baseline is variable (TWI ver2)

Sensitivity Results

- Nuyakuk flow is relatively **sensitive** to:
 - Stream-aquifer leakage
 - Detention storage
 - Precipitation lapse rate
- Nuyakuk flow is relatively **less sensitive** to:
 - Soil hydraulic properties
 - Aquifer hydraulic properties

Climate Change Methods

- Delta method: Applied GCM-derived change factors to baseline ERA5 climate data
- Extracted monthly data for mid-century (2040-2060) and compared to baseline (2000-2020) to calculate GCM change factors
- Used five global climate models (GCMs) selected by Scenarios Network for Alaska + Arctic Planning (SNAP) program to represent Alaska climate:
 - CCSM, GFDL, IPSL, GISS, MRI
- Applied two greenhouse gas trajectories (RCP4.5 and RCP8.5) to bracket future impacts

Scenarios Network

Precipitation Changes: mid-century summer

Jul Precip RCP 4.5 ratio 2040-2060/2000-2020

Precipitation Changes: mid-century winter

Jan Precip RCP 4.5 ratio 2040-2060/2000-2020

Temperature Changes: mid-century summer

Jul 2mT (deg C) RCP 4.5 2040-2060 minus 2000-2020

Temperature Changes: mid-century winter

Jan 2mT (deg C) RCP 4.5 2040-2060 minus 2000-2020

Jan 2mT (deg C) RCP 8.5 2040-2060 minus 2000-2020

Climate Change Summary 2040-2060 vs 2000-2020

- Significantly warmer temperatures
 - RCP 4.5: 1°C (~2°F) warmer in summer, 2°C (~4°F) warmer in winter
 - RCP 8.5: 1.7°C (~3°F) warmer in summer, 3°C (~6°F) warmer in winter
 - CCSM is an outlier in all seasons under RCP 4.5
- Slightly higher precipitation
 - RCP 4.5: 5% increase in summer, 10% increase in winter
 - RCP 8.5: 15% increase in summer, 15% increase in winter

Snowpack

- Seasonal changes in snow water equivalent (SWE)
- Changes vary by elevation

Climate Change Results – High Elevation Snow

- Both RCP scenarios REDUCE snowpack (SWE).
- Lower elevation SWE is affected more than higher elevation SWE

Climate Change Results – Mid-Elevation Snow

- Both RCP scenarios REDUCE snowpack (SWE).
- Lower elevation SWE is affected more than higher elevation SWE

Climate Change Results - Discharge

Climate Change Results – Flow duration curves

• Flow duration curves illustrate how often flows of certain magnitudes are exceeded.

Implications for hydropower resource (1)

- Need a minimum flow to turn turbines: hydrograph changes could affect the fraction of time power can be generated
 - Example below: Change in frequency of flows >5000cfs

Implications for hydropower resource (2)

- Average monthly flows decrease substantially in June-July
- Average monthly flows increase substantially in December-March
- These changes should be evaluated in more detail in the context of:
 - Seasonal electricity demand (winter heating vs summer fisheries needs)
 - Salmon migration patterns

Additional Model Capabilities

- Coupled hydro-economic model of hydropower facility
- Habitat suitability modeling
 - Environmental flows
 - Stream depth, velocity
 - Stream temperature
- Climate change impacts to entire Nushagak system
- Other development impacts to full Nushagak system